- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0003000002000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Doherty, Kevin (5)
-
Englot, Brendan (4)
-
Shan, Tixiao (2)
-
Wang, Jinkun (2)
-
Cyr, Caralyn (1)
-
Flaspohler, Genevieve (1)
-
Girdhar, Yogesh (1)
-
Leonard, John (1)
-
Martin, John D. (1)
-
Pearson, Erik (1)
-
Roy, Nicholas (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Martin, John D.; Doherty, Kevin; Cyr, Caralyn; Englot, Brendan; Leonard, John (, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems)null (Ed.)
-
Doherty, Kevin; Shan, Tixiao; Wang, Jinkun; Englot, Brendan (, IEEE Transactions on Robotics)
-
Doherty, Kevin; Flaspohler, Genevieve; Roy, Nicholas; Girdhar, Yogesh (, IEEE)
-
Shan, Tixiao; Doherty, Kevin; Wang, Jinkun; Englot, Brendan (, Proceedings of the 2nd Conference on Robot Learning)We propose a new approach for traversability mapping with sparse lidar scans collected by ground vehicles, which leverages probabilistic inference to build descriptive terrain maps. Enabled by recent developments in sparse kernels, Bayesian generalized kernel inference is applied sequentially to the related problems of terrain elevation and traversability inference. The first inference step allows sparse data to support descriptive terrain modeling, and the second inference step relieves the burden typically associated with traversability computation. We explore the capabilities of the approach over a variety of data and terrain, demonstrating its suitability for online use in real-world applications.more » « less
An official website of the United States government

Full Text Available